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Abstract

In this paper, we optimize the performance of several classes of simple flow systems consisting of T- and Y-shaped assemblies of ducts,
channels and streams. In each case, the objective is to identify the geometric configuration that maximizes performance subject to several
global constraints. Maximum thermodynamic performance is achieved by minimization of the entropy generated in the assemblies. The
boundary condition is fixed temperature of the channel wall. The flow is assumed laminar and fully developed. Every geometrical detail
of the optimized structure is deduced from the constructal law. Performance evaluation criterion is proposed for evaluation and com-
parison of the effectiveness of different tree-shaped design heat exchangers. This criterion takes into account and compare the entropy
generated in the system with heat transfer performance achieved.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Among the more recent methods that have become
established in thermal engineering, thermodynamic
optimization has the objective of improving the global
performance of the system subject to specified global
constraints. Thermodynamic optimization is useful as a
first step, for orientation in the search of tradeoffs that gov-
ern the geometrical configuration of the system. Tree net-
works were brought to heat transfer by constructal
theory [1,2] and now represent a new trend in the optimiza-
tion and miniaturization of heat transfer devices [1–6],
mass exchangers [7,8], chemical reactors [9], and fuel cells
[10–12]. Tree-shaped architectures promise a more judi-
cious use of the available space: higher densities of heat
and mass transfer and chemical reactions, and a more uni-
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form volumetric distribution of transport processes. The
fundamental study of the optimization of tree-shaped
architectures also sheds light on the common design princi-
ples of engineered and natural flow systems.

In design, and in society in general, space is at a pre-
mium. This is why the interest in performance at smaller
and smaller scales is natural, and will continue. The mini-
aturization revolution means not only that the smallest
identifiable volume element (the elemental system [1]) is
becoming smaller, but also that larger and larger numbers
of such elements must inhabit the microscopic device that
they serve. The smaller the elements, and the larger their
number, the greater the complexity of the structure. Pack-
ing the system with smaller, more powerful and more
numerous elemental systems is a necessary first step. The
challenge is not only to find geometric arrangements to
connect the currents that access the elemental systems,
but to optimize each connection such that, ultimately, each
design choice is reflected in an increase in performance at
the global level. To assemble more and more elements into
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Nomenclature

A area (m2)
cp specific heat (J kg�1 K�1)
D channel diameter (m)
f Fanning friction factor
h heat transfer coefficient (W m�2 K�1)
k thermal conductivity (W m�1 K�1)
L length (m)
M dimensionless mass flow rate, M ¼ _mcp=

ðpkNuA1=2Þ
_m mass flow rate (kg s�1)
Ns entropy generation ratio, N s ¼ T _Sgen=q
Nu Nusselt number, Nu = hiDi/k
n number of pairing levels
n0 number of central ducts
P pressure (Pa)
q heat flow (W)
~q dimensionless heat flow , ~q ¼ q=ðpkNuA1=2T Þ
r radius (m)
_Sgen entropy generation rate (W K�1)eSgen entropy generation number, eSgen ¼ _Sgen=

ðpkNuA1=2Þ
s specific entropy (J kg�1 K�1)

T temperature (K)
T0 fluid flow temperature (K)
DT temperature difference (K)
um mean fluid flow velocity (m s�1)
V volume (m3)
v specific volume (m3 kg�1)
_W pumping power (W), _W ¼ _mDP=qeW dimensionless pumping power, eW ¼ _W V 2=

½ðkNu=cpÞ2ðm=qÞA5=2Þ�

Greek symbols

# temperature difference
m kinematic viscosity (m2 s�1)
q density (kg m�3)
s DT/T

Subscripts

i inlet or channel rank
m mean
n number of construction levels
out outlet
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complex structures, and to optimize (with global objective
and space constraints) each connection means to construct.

Improvement in the global thermodynamic performance
of a system means the decrease in the irreversibility (or
entropy generation, exergy destruction) that characterizes
all the components and processes of the system. An engi-
neering flow system owes its irreversibility to several mech-
anisms, most notably the flow of heat, fluid and electric
current due to driving potentials, and against finite resis-
tances. The entropy generated by each current is propor-
tional to the product of the current times the driving
potential, i.e. proportional to the resistance overcome by
the current. In simple terms, the entire effort to optimized
thermodynamically the greater system rests on the ability
to minimize all internal flow resistances, together. Because
of constraints, the resistances compete against each other.

The route to improvements in global performance
is by balancing the reductions in the competing resis-
tances. Thermodynamically, this amounts to spreading
the entropy generation rate through the system in an opti-
mal way, so that the total irreversibility is reduced. Optimal
spreading of imperfection is achieved by properly sizing,
shaping and positioning the components. In the end, the
geometry structure of the system – its architecture –
emerges as a result of global thermodynamic optimization.

Tree-shaped flows have been studied extensively recently
[11–19]. Bejan [20], and da Silva et al. [21] proposed to use
dendritic flow architecture in the conceptual design of two-
stream heat exchangers. This is a new direction for the
development of the heat exchanger architecture. The ulti-
mate goal is to determine flow architectures that reach
simultaneously two objectives: (i) minimal global fluid resis-
tance (or pumping power), and (ii) minimal thermal
resistance. When the architecture is optimized for (i), the
result is a dendritic structure in which every geometric fea-
ture is uniquely determined. The corresponding thermal
resistance decreases as the total mass flow rate and pump-
ing power increase. When the objective is (ii), the optimal
architecture has radial ducts, not dendrites. The corre-
sponding fluid-flow resistance increases as the flow rate
increases and the global thermal resistance decreases.

In this paper, we continue to develop the idea of a new
way of approaching the geometric optimization of
tree-shaped paths for fluid flow, as the temperature of the
channel wall is fixed. The objective is to determine flow
architectures that reach simultaneously two objectives: (i)
minimal global entropy generated, and (ii) maximum heat
flow density. We consider simple building blocks consisting
of a few streams that serve as tributaries or branches in a
constrained space. A larger stream with two branches (or
two tributaries) forms a construct shaped as T or Y. We
also show that by putting together the optimized constructs
it is possible to reconstruct features of the much more com-
plicated tree structures optimized so far. Next, we show a
performance evaluation criterion for evaluation of the
performance of new tree-shaped flow geometries through
comparison of the entropy generated in the system with
the heat transfer performance achieved.
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2. Problem formulation

In order to calculate the entropy generation, we consider
an axially uniform duct of circular cross-section with
Tw = constant on its surface. An incompressible viscous
fluid with mass flow rate _mi and inlet temperature Ti enters
the channel with length Li. The flow is laminar and fully
developed (Hagen–Poiseuille). Consider the energy balance
of the control volume of length dx

h#pDdx ¼ �qcpum

pD2

4
d#: ð1aÞ

Integrating Eq. (1a) yields

#ðxÞ ¼ #i exp � pkNu
_mcp

x
� �

; ð1bÞ

where #i = Tw � Ti is the initial temperature difference.
Considering an entropy balance in the same control vol-
ume, the rate of entropy generation is

d _Sgen þ
dq
T w

¼ _mds: ð2aÞ

Assuming the fluid to be an ideal gas or incompressible
fluid, and using the thermodynamic relation Tds = cpdT �
vdP and q ¼ _mcp dT , Eq. (2a) can be written as

d _Sgen

dx
¼ _mcp

T w � T
TT w

dT
dx
þ _m

qT
� dP

dx

� �
: ð3aÞ

Substituting the values Tw = T(x) + DT(x) and s = DT/T

d _Sgen

dx
¼ _mcp

dT
dx

DT

T 2ð1þ sÞ
þ _m

qT
� dP

dx

� �
: ð3bÞ

Assuming that s� 1, Eq. (3b) becomes

d _Sgen

dx
¼ _mcp

DT

T 2

dT
dx
þ _m

qT
� dP

dx

� �
; ð4Þ

where T ðxÞ ¼ T w � #i exp � pkNu
_mcp

x
� �

, DT ¼ T w � T ðxÞ ¼

#i exp � pkNu
_mcp

x
� �

and dT
dx ¼ pkNu

_mcp
#i exp � pkNu

_mcp
x

� �
. Integrating

Eq. (4) along the length of the ith channel

_Sgen;i ¼
qiDT min

T inT out

þ 32 _m3
i fiLi

q2p2D5
i T w

¼ qiDT min;i

T 2
0

þ 128m _m2
i Li

qpT wD4
i

: ð5Þ

In Eq. (5), DTmin,i = Tw � Tout,i, qi = pkNuLiDTm,i, fi ¼
16=Rei ¼ 4pqmDi= _mi, and we assume that T inT out ffi T 2

in ffi
T 2

out ¼ T 2
0 (T0 is the fluid flow temperature. It can be Tin,

Tout or Tav (average)). For each channel, the mean temper-
ature difference DTm,i is defined as

DT m;i ¼
1

Li

Z Li

0

DT idx

¼ DT max;i
_micp

pkNuLi
1� exp � pkNuLi

_micp

� �� �
¼ DT max;i

N i
½1� expð�NiÞ�; ð6Þ
where Ni ¼ pkNuLi
_micp

is the local number of heat transfer units,
and DTi is defined from Eq. (4),

DT i ¼ T w � T iðxÞ ¼ DT max;i exp � pkNu
_micp

x
� �

¼ DT max;i exp �Ni
x
Li

� �
: ð7Þ

The maximal DTmax,i and minimal DTmin,i temperature
differences can be obtained from Eq. (7) at x = 0, and
x = Li, respectively,

DT min;i ¼ DT max;iþ1 ¼ DT max;i exp � pkNu
_micp

Li

� �
¼ DT max;i expð�N iÞ: ð8Þ

For tree-shaped heat exchanger, the overall entropy gener-
ated is

_Sgen ¼
Xn

i¼0

ni
_Sgen;i

¼ 1

T 2
0

Xn

i¼0

niqiDT min;i þ
128m
qpT w

Xn

i¼0

ni _m2
i

Li

D4
i

; ð9Þ

where

qi ¼ pkNuLiDT m;i ¼ _micpDT i
x

¼ _micpDT max;i 1� exp � pkNu
_micp

Li

� �� �
¼ _micpDT max;i½1� expð�NiÞ�: ð10Þ

The maximal temperature difference in each channel,
DTmax,i, is defined as follows:

DT max;i ¼ DT max ¼ T w � T 0; i ¼ 0

DT max;i ¼ DT max exp �
Xi�1

k¼0

Nk

 !
; i ¼ 1; 2; . . . ; n:

ð11Þ

Thus, the minimal temperature difference in each channel,
DTmin,i, Eq. (8), becomes

DT min;i ¼ DT max exp �
Xi

k¼0

N k

 !
; i ¼ 0; 1; . . . ; n: ð12Þ

Eq. (9) can be presented in dimensionless form as

_Sgen

pkNuA1=2
� eS gen

¼ 1

pkNuA1=2T 2
0

Xn

i¼0

niqiDT min;i

þ 128m

qp2kNuA1=2T w

Xn

i¼0

ni _m2
i

Li

D4
i

: ð13Þ

The overall enthalpy change is q ¼ _mcpDT x, where DTx is
the overall longitudinal temperature excursion

DT x ¼
Xn

i¼0

DT x;i ¼
Xn

i¼0

DT max;i½1� expð�N iÞ�: ð14Þ
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The heat flow can also be obtained as

q ¼
Xn

i¼0

niqi ¼
Xn

i¼0

ni _micpDT max;i½1� expð�N iÞ�

¼ n0 _m0cpDT max½1� expð�N 0Þ�

þ cpDT max

Xn

i¼1

ni _mi exp �
Xi�1

k¼0

N k

 !
½1� expð�N iÞ�:

ð15Þ
3. Laminar flow in a T-shaped assembly of tubes – first

construct

Consider first the case of incompressible flow through
the T-shaped structure, Fig. 1, for which n = 1, ni = 2n�i =
21�i, _mi ¼ 2i _m0, _m ¼ 2n _m0 ¼ 2 _m0. The flow is laminar and
fully developed (Hagen–Poiseuille). The total volume occu-
pied by the tubes is fixed,

V ¼
X

ni
p
4

D2
i Li ¼

p
4
ð2D2

0L0 þ D2
1L1Þ ¼ const: ð16Þ

Fixed is also the total space occupied by the planar
structure,

A ¼ ð4L0Þð2L1Þ ¼ 8L0L1 ¼ const: ð17Þ

The objective is to minimize the entropy generation, eS gen,
Eq. (13). For this particular case,Xn

i¼0

niqiDT min;i

¼
X1

i¼0

21�iqiDT min;i ¼ 2q0DT min;0 þ q1DT min;1

¼ _mcpDT 2
max exp � 2�1=2

MeL1=2

 !

� 1� exp � 2�1=2

MeL1=2

 !" #
þ exp � 2þ eL

23=2MeL1=2

 !(

� 1� exp � 2�3=2eL1=2

M

 !" #)
Fig. 1. T-shaped assembly of round tubes.
and

Xn

i¼0

ni _m2
i

Li

D4
i

¼ _m2 L0

2D4
0

þ L1

D4
1

� �
¼ _m2L0

2D4
0

1þ 2eLeD4

 !
;

where eL ¼ L1=L0, L0 ¼ 2�3=2A1=2eL�1=2, and eD ¼ D1=D0. The
first term in Eq. (13) does not depend on eD and the optimi-
zation of the entropy generation, Eq. (13), with respect toeD follows the same procedure as that developed by
Bejan et al. [13]. It gives the well known result of eD ¼
21=3. Thus,

Xn

i¼0

ni _m2
i

Li

D4
i

¼ _m2L0

2D4
0

ð1þ 2�1=3eLÞ ¼ _m2p2A3=2

128V 221=2

ð1þ 2�1=3eLÞ3eL3=2
:

Accordingly, the first term of Eq. (13) becomes

eS gen;DT ¼
1

pkNuA1=2T 2
0

Xn

i¼0

niqiDT min;i

¼ _mcpDT 2
max

pkNuA1=2T 2
0

exp � 2�1=2

MeL1=2

 !

� 1� exp � 2�1=2

MeL1=2

 !" #
þ exp � 2þ eL

23=2MeL1=2

 !(

� 1� exp � 2�3=2eL1=2

M

 !" #)
; ð18Þ

whereas the second term yields

eS gen;DP ¼
128m

qp2kNuA1=2T w

Xn

i¼0

ni _m2
i

Li

D4
i

¼ mkNu
qc2

pT w

p2A2

V 221=2
M2 ð1þ 2�1=3eLÞ3eL3=2

: ð19Þ

Finally, Eq. (13) can be presented in the form

eS gen ¼ MðT � � 1Þ2 exp � 2�1=2

MeL1=2

 !

� 1� exp � 2�1=2

MeL1=2

 !" #
þ exp � 2þ eL

23=2MeL1=2

 !(

� 1� exp � 2�3=2eL1=2

M

 !" #)
þ B1M2 ð1þ 2�1=3eLÞ3eL3=2

;

ð20Þ

where

B1 ¼
p2mkNuA2

21=2qc2
pV 2T w

; and T � ¼ T w=T 0: ð21Þ
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Eq. (20) can also be presented in the form

eS gen ¼ MðT � � 1Þ2 � exp � 2�1=2

MeL1=2

 !"

� 1� exp � 2�1=2

MeL1=2

 !" #
þ exp � 2þ eL

23=2MeL1=2

 !(

� 1� exp � 2�3=2eL1=2

M

 !" #)

þ B1M

ðT � � 1Þ2
ð1þ 2�1=3eLÞ3eL3=2

#
: ð22Þ

The limiting cases are:

(i) T* = 1 (isothermal condition), when
Table
The va

B*

0.01
0.1
1
10
100
1000
eSgen ¼ B1M2 ð1þ 2�1=3eLÞ3eL3=2
ð23Þ

and the minimization of eSgen ðdeS gen=deL ¼ 0Þ subject
to constraints A and V yields the ratio eLopt ¼ 21=3.
The same result was obtained in Ref. [13] from the
principle of minimum global flow resistance.
(ii) T* > 1, and B� ¼ B1M
ðT ��1Þ2 	 1, when
eSgen ¼ B1M2 ð1þ 2�1=3eLÞ3eL3=2
:

The result is the same as in case (i).

(iii) T* > 1, and B� ¼ B1M

ðT ��1Þ2 � 1, when
eSgen ¼MðT � � 1Þ2 exp � 2�1=2

MeL1=2

 !

� 1� exp � 2�1=2

MeL1=2

 !" #(

þ exp � 2þ eL
23=2MeL1=2

 !
1� exp �2�3=2eL1=2

M

 !" #)
ð24Þ

and the result for eLopt is again eLopt ¼ 21=3. In the
intermediate range 10�2 < B* < 103, the results
of eLopt, Table 1, show very small variations aroundeLopt ¼ 21=3. It can be concluded that the optimal
length ratio is eLopt ¼ 21=3 despite the value of B*. This
result confirms again the result obtained in Ref. [13]
from the principle of minimum global flow resistance.
1
riation of Lopt with B* eLopt

1.25992105
1.243493877
1.247552317
1.260169892
1.259924406
1.25992105
Fig. 2 presents tree-shaped streams distributed over a
square area. This configuration was designed from the
principle of minimal global flow resistance. The numbers
and flow rates are ordered as

ni ¼ 2n�i; _mi ¼ 2i _m0 ði ¼ 0; 1; . . . ; nÞ: ð25Þ

The lengths are obeyed the length-doubling rule by writing
approximately [17] Li = 2i/2L0, and

L0 ¼
A1=2

2ðnþ2Þ=2
; D0 ¼

2ð6�nÞ=4V 1=2

p1=2A1=4S1=2
1

: ð26Þ

For this design configuration,

q ¼ _mcpDT max 1� exp � 2ðn�2Þ=2

M

 !" #(

þ
Xn

i¼1

exp �
Xi�1

k¼0

2ðn�k�2Þ=2

M

 !
1� exp � 2ðn�i�2Þ=2

M

 !" #)
ð27Þ

or

~q¼ q

pkNuA1=2T 0

¼MðT � � 1Þ 1� exp �2ðn�2Þ=2

M

 !" #
þ S2

( )
;

ð28ÞXn

i¼0

niqiDT min;i ¼ _mcpDT 2
max exp �2ðn�2Þ=2

M

 !(

� 1� exp �2ðn�2Þ=2

M

 !" #
þ S3

)
ð29Þ

and the entropy generation number, Eq. (13), yields

eS gen ¼ MðT � � 1Þ2 exp � 2ðn�2Þ=2

M

 !(

� 1� exp � 2ðn�2Þ=2

M

 !" #
þ S3

)
þM2B2

S3
1

2n=2
; ð30Þ
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where

S1 ¼
Xn

i¼0

2i=6 ¼ 2ðnþ1Þ=6 � 1

21=6 � 1
; ð31Þ

S2 ¼
Xn

i¼1

exp �
Xi�1

k¼0

2ðn�k�2Þ=2

M

 !
1� exp � 2ðn�i�2Þ=2

M

 !" #
;

ð32Þ

S3 ¼
Xn

i¼1

exp �
Xi�1

k¼0

2ðn�k�2Þ=2

M

 !" #2

exp � 2ðn�i�2Þ=2

M

 !

� 1� exp � 2ðn�i�2Þ=2

M

 !" #
ð33Þ

and B2 ¼ mkNup2A2

qc2
pT wV 2 . Eq. (30) gives the variation of eS gen with M

and n at fixed B2 and T*, and is to be used in the case of
specified mass flow rate, M. Fig. 3 shows the variation of
entropy generation number eS gen with mass flow rate M

and number of channels, n, at fixed B2 and T*. As expected,
the entropy generation eSgen increases with the mass flow
rate M and with the complexity n. A secondary effect is
the appearance of diminishing returns as n increases. Addi-
tionally, it should be noted that the variation of eS gen does
not depend on the value of the parameter T*.

The performance of the tree-shaped flow geometries can
be evaluated through entropy generation ratio Ns which
compares the entropy generated in the system with the heat
transfer performance achieved. The increase of the number
of branches increases the entropy generated in the system.
At the same time, however, overall heat flow, Eq. (27),
increases as well. To compare the entropy generated in
the system with the heat transfer performance achieved
in the tree-shape design, we combine Eqs. (28) and (30)
in the ratio
Fig. 3. Effect of the mass flow rate M and complexity n on the
dimensionless entropy generation eS gen for a tree-shaped structure distrib-
uted over a square area.
Ns ¼
eS gen

~q
� T 0

_Sgen

q

¼
ðT � � 1Þ exp � 2ðn�2Þ=2

M

� �
1� exp � 2ðn�2Þ=2

M

� �h i
þ S3

n o
1� exp � 2ðn�2Þ=2

M

� �h i
þ S2

n o
þ S3

1

2n=2ðT � � 1Þ
B2M

1� exp � 2ðn�2Þ=2

M

� �h i
þ S2

n o : ð34Þ

Eq. (34) gives the variation of Ns with M and n at fixed B2

and T*, and is to be used in the case of specified mass flow
rate, M. Fig. 4 shows the variation of entropy generation
ratio Ns with mass flow rate M and number of channels
n, at fixed B2 and T*. As seen in Fig. 4 Ns increases with
M at two different rates, and the transition between these
two limits happens around M 
 50. For small mass flow
rates, M < 1, the entropy generation number increases with
M at a smaller rate when compared with the increasing rate
at large mass flow rate regimes, M > 102. Additionally,
Fig. 4 shows the detrimental effect of the complexity n on
the entropy generation ratio Ns throughout the whole
range of mass flow rate considered, 10�3 < M < 103, with
the appearance of diminishing returns as n increase. Simi-
larly to the effect of M on Ns, the complexity n also acts dif-
ferently on Ns depending on the mass flow rate considered.
For values of M < 1, the diminishing return rate is much
smaller than the large mass flow rate limit, M > 102, where
n has basically no effect on the entropy generations ratio if
n > 3.

In the case of fixed pumping power, eW ¼ const, Eq. (34)
can be transformed using the relationship [21]:

M ¼ 2n=4

p3=2S3=2
1

eW 1=2: ð35Þ
Fig. 4. Effect of the mass flow rate M and complexity n on the entropy
generation ratio Ns for a tree-shaped structure distributed over a square
area.
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Fig. 5 shows the variation of entropy generation ratio Ns

with pumping power eW and number of channels n, at fixed
B2 and T*. On the contrary of Fig. 4 where Ns increases
unconditionally with M and n, here, higher complexity lev-
els are proven to be profitable at certain values of eW . This
behaviour permits an envelope curve of minimum entropy
generation number for any pumping power available to be
drawn. This means that when eW is constrained, the sim-
plest configuration (i.e. smaller n) is not necessarily the best
design as shown previously, Fig. 4.

Fig. 6 shows the envelope curves of minimal Ns for three
different values of T*. The vertical dashed lines indicate the
Fig. 6. Envelope curves of minimal entropy generation ratio (Ns) for a
tree-shaped structure distributed over a square area (DT* = 1.01, 1.5 and
2).

Fig. 5. Effect of the dimensionless pumping power eW and complexity n on
the entropy generation ratio Ns for a tree-shaped structure distributed over
a square area.
optimal complexity for each one of the three T* envelope
curves. It is important to notice that range to validity of
a given optimal complexity shifts slightly to the left as T*

increases. Also, the effectiveness of the design increases
with the increase of the parameter T*.

4. Y-shaped assembly in a circle area

The next problem is Y-shaped construct of two L0, and
one L1 tubes occupying the fixed area A of the circle sector
of angle a, Fig. 7. The geometry of the Y-shaped construct
depends on the radial position of the node (i.e. the length
L1), or the angle b. Both L0 and L1 vary with b, when r

is fixed:

L0 ¼ r
sin a

4

� 	
sin b

¼ r
sin p

2n0

� �
sin b

; ð36Þ

L1 ¼ r cos
a
4

� �
� r

sin a
4

� 	
tan b

¼ r cos
p

2n0

� �
� r

sin p
2n0

� �
tan b

; ð37Þ

eL ¼ L1=L0 ¼
sin b

tan p
2n0

� �� cos b; ð38Þ

a ¼ 2p
n0

, A ¼ pr2

n0
, and n0 is the number of tubes leaving the

centre. For this case, the quantities in Eq. (13) yieldXn

i¼0

niqiDT min;i

¼ 2q0DT min;0þ q1DT min;1

¼ _mcp

n0

DT 2
max exp � 2n0

p1=2M

sin p
2n0

� �
sinb

24 35
� 1� exp � 2n0

p1=2M

sin p
2n0

� �
sinb

24 358<:
9=;

0@
þ 1� exp � n0

p1=2M
cos

p
2n0

� �
�

sin p
2n0

� �
tanb

24 358<:
9=;

0@ 1A
� exp � n0

p1=2M

2sin p
2n0

� �
sinb

þ cos
p

2n0

� �
�

sin p
2n0

� �
tanb

24 358<:
9=;
1A

ð39Þ

and

Xn

i¼0

ni _m2
i

Li

D4
i

¼ _m2

2n2
0

p1=2A3=2

4V 2

�
sin3 p

2n0

� �
sin3 b

1þ 2�1=3 sin b

tan p
2n0

� �� cos b

24 358<:
9=;

3

:

ð40Þ



Fig. 7. Sketch of a Y-shaped assembly occupying a fixed area of a circle
sector.
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Thus, the first term in Eq. (13) becomeseS gen;DT

¼MðT � � 1Þ2

n0

exp � 2n0

p1=2M

sin p
2n0

� �
sinb

24 35
� 1� exp � 2n0

p1=2M

sin p
2n0

� �
sinb

24 358<:
9=;

0@
þ 1� exp � n0

p1=2M
cos

p
2n0

� �
�

sin p
2n0

� �
tanb

24 358<:
9=;

0@ 1A
� exp � n0

p1=2M

2 sin p
2n0

� �
sinb

þ cos
p

2n0

� �
�

sin p
2n0

� �
tanb

24 358<:
9=;
1A:
ð41Þ
The second term in Eq. (13) yields

eSgen;DP ¼
B3M2

n2
0

sin3 p
2n0

� �
sin3 b

1þ 2�1=3 sin b

tan p
2n0

� �� cos b

24 358<:
9=;

3

;

ð42Þ
where B3 ¼ 16p1=2mkNuA2

qc2
pV 2T w

. The limiting cases are:

(i) T* = 1 (isothermal condition), when
� � 2 38 9
eS gen¼
B3M2

n2
0

sin3 p
2n0

sin3 b
1þ2�1=3 sinb

tan p
2n0

� �� cosb4 5<: =;
3

;

ð43Þ
For this limiting case, the optimal angle of confluence
is bopt = 0.654 rad(37.47) regardless of n0, whereaseLopt depends on n0: n0 = 3, eLopt ¼ 1; n0 = 5,eLopt ¼ 2:165; n0 = 10, eLopt ¼ 4:967. The same result
was obtained in [18] from the principle of minimum
global flow resistance.
(ii) T* > 1, and B� ¼ B3M
n0ðT ��1Þ2 	 1, when
eS gen¼
B3M2

n2
0

sin3 p
2n0

� �
sin3 b

1þ2�1=3 sinb

tan p
2n0

� �� cosb

24 358<:
9=;

3

:

ð44Þ

The result is the same as in case (i).
(iii) T* > 1, and B� ¼ B3M
n0ðT ��1Þ2 � 1, when
eS gen ¼
MðT � � 1Þ2

n0

exp � 2n0

p1=2M

sin p
2n0

� �
sinb

24 35

� 1� exp � 2n0

p1=2M

sin p
2n0

� �
sinb

24 358<:
9=;

0@

þ 1� exp � n0

p1=2M
cos

p
2n0

� �
�

sin p
2n0

� �
tanb

24 358<:
9=;

0@ 1A

� exp � n0

p1=2M

2 sin p
2n0

� �
sinb

248<:
þ cos

p
2n0

� �
�

sin p
2n0

� �
tanb

359=;
1A: ð45Þ
For this case there is no bopt and Lopt.

When the two terms of entropy generation number eS gen

are comparable the results for bopt and Lopt depend on the
values of M and n0. Table 2 shows the results for bopt and
Lopt for values of n0 = 4, 5, 6 and 10 in the range
10�5 < M < 105, for B3 = 1 and T* = 1.25. It is remarkably
that for n0 = 5, the values of bopt = 0.654 and Lopt = 1.078
almost do not depend on the values of M. There are no real
values of bopt and Lopt for values of n0 5 5.

Disc-shaped tree flow structure was optimized in [15] for
minimum overall flow resistance. The numbers and flow
rates are ordered as follows:
ni ¼ 2n�in0; _mi ¼ 2i�n _m
n0

ði ¼ 0; 1; . . . ; nÞ: ð46Þ
The lengths are presented in dimensionless form as
bLi ¼ Li=R; ð47Þ



Table 2
The variation of bopt and Lopt for B3 = 1 and T* = 1.25

M n0 = 4 n0 = 5 n0 = 6 n0 = 10

bopt Lopt bopt Lopt bopt Lopt bopt Lopt

10�5 0.653927 1.07848
10�4 0.653927 1.07848
10�3 0.653927 1.07848
10�2 0.653927 1.07848
10�1 0.653927 1.07848
1 0.652626 1.07451
101 0.653933 1.07850
102 1.04448 1.58512 0.653929 1.07848 1.051505 2.74379 1.06614 5.04318
103 1.04696 1.59027 0.653928 1.07848 1.047625 2.73322 1.04896 4.97494
104 1.04717 1.59072 0.653928 1.07848 1.047240 2.73217 1.04737 4.96857
105 1.04720 1.59076 0.653928 1.07848 1.047202 2.73206 1.04722 4.96794

Fig. 8. Effect of the mass flow rate M and complexity n on the
dimensionless entropy generation eSgen for the dendritic structure of Fig. 7.
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where

R ¼ A1=2

p1=2
; D0 ¼

V 1=2S�1=2
4

p1=4A1=4n1=2
0 2ðn�2Þ=2

;

and

S4 ¼
Xn

i¼0

2�i=3bLi:

For this design, the entropy generation number, Eq. (13),
yields

eS gen ¼ MðT � � 1Þ2 exp � n02n

p1=2M
bL0

� �

� 1� exp � n02n

p1=2M
bL0

� �� �
þ S5

�
þ B4n02nS3

4M2;

ð48Þ

where

S5 ¼
Xn

i¼1

1� exp � n02n

p1=2M

bLi

2i

 !" #
exp � n02n

p1=2M

Xi

k¼0

2�kbLk

 !( )
ð49Þ

and B4 ¼ 8p1=2mkNuA2

qc2
pT wV 2 . The overall heat flow is

q ¼ _mcpDT max 2�n 1� exp � n02n

p1=2M
bL0

� �� �
þ S6


 �
ð50Þ

or

~q ¼ MðT � � 1Þ 2�n 1� exp � n02n

p1=2M
bL0

� �� �
þ S6


 �
; ð51Þ

where

S6¼
Xn

i¼1

1� exp � n02n

p1=2M

bLi

2i

 !" #
exp �

Xi�1

k¼0

n02n

p1=2M

bLk

2k

 !( )
:

ð52Þ
Eq. (48) presents the variation of eS gen with M and n, at

fixed n0, B4, and T*. Fig. 8 shows the variation of eS gen

with M at B4 = 1, n0 = 3 and T* = 1.25. Similar to the
behaviour of the square tree-shaped design presented in
Fig. 3, eS gen increases with M for the disc-shaped design,
however, no diminishing returns are found as n increases.
Actually, the step taken by the each eS gen curve increases
slightly with n.

To compare the entropy generated in the system with the
heat transfer performance achieved in the tree-shape design,
we combine Eqs. (48) and (51) in the ratio

Ns ¼
eS gen

~q
� T 0

_Sgen

q

¼ ðT � � 1Þ
exp � n02n

p1=2M
bL0

� �
1� exp � n02n

p1=2M
bL0

� �h i
þ S5

n o
2�n 1� exp � n02n

p1=2M
bL0

� �h i
þ S6

n o
þB4

n02nS3
4M

T � � 1ð Þ 2�n 1� exp � n02n

p1=2M
bL0

� �h i
þ S6

n o : ð53Þ

Eq. (53) gives the variation of Ns with M and n, the case of
fixed mass flow rate, M = const, at fixed n0, B4, and T*.
Fig. 9 shows the variation of entropy generation ratio Ns

with mass flow rate M and number of channels n, at
B4 = 1, n0 = 3 and T* = 1.25. It is obvious that for small



Fig. 9. Effect of the mass flow rate M and complexity n on the entropy
generation ratio Ns for the dendritic structure of Fig. 7.
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mass flow rates, M < 1, the entropy generation number in-
creases with the increase of complexity (number of chan-
nels). For higher mass flow rates, M > 102, the influence
of the number of channels on the entropy generation num-
ber disappears and no diminishing returns can be identified
as n increases for the range of 10�2 < M < 103.

In the case of fixed pumping power, eW ¼ const, Eqs.
(48) and (51) are to be used with relation

M ¼
eW 1=2

p3=42ðnþ3Þ=2n1=2
0 S3=2

4

: ð54Þ

Fig. 10 shows the variation of entropy generation ratio
Ns with pumping power eW and number of channels n, at
Fig. 10. Effect of the dimensionless pumping power eW and complexity n

on the entropy generation ratio Ns for the dendritic structure of Fig. 7.
B4 = 1, n0 = 3 and T* = 1.25. The figure shows again that
complexity can be profitable at larger pumping power val-
ues and because of that an envelope curve for minimum
entropy generation number exists.

5. Conclusions

In this paper, we propose a new method for thermody-
namic optimization to several classes of simple flow sys-
tems consisting of T- and Y-shaped assemblies of ducts,
channels and streams. In each case, the objective was
to identify the geometric configuration that maximized
performance subject to several global constraints. The
thermodynamic performance maximization is achieved by
minimization of the entropy generated in the system. The
boundary condition is fixed temperature of the channel
wall. The flow is laminar and fully developed (Hagen–
Poiseuille).

The relatively simple constructs, and the various formu-
lation of the global performance maximization problem
were chosen intentionally in order to stress the most impor-
tant features in the method. The maximization of the ther-
modynamic performance in pure fluid flow, through the
minimization of the global flow resistance, is a particular
case of this method. The emergence of geometric structure
is a result of the consistent maximization of performance
subject to constraints and every detail of the optimal flow
geometry was a result of the pursuit of better global perfor-
mance subject to global constraint.

Another important feature illustrated by these examples
is the robustness of the optimized design for eD. The
optimal ratio of the channel thickness (eD ¼ D1=D0Þ is
completely independent of the rest of the geometric param-
eters and global constraints. This simplifies the design of
future and more complex systems, and, at the same time,
insures a near-optimal performance of existing systems
the structures of which may deviate from the originally
intended design.

Throughout these series of examples we show that the
optimized geometry has the effect of ‘‘partitioning’’ opti-
mally certain features of the system. Optimal partitioning,
or optimal allocation of constrained quantities is a by-
product of the optimization of flow geometry. It is encoun-
tered every time global performance is maximized: optimal
allocation is another way of interpreting the special optimi-
zation of the flow arrangement, i.e. the optimal distribution
of imperfection [2].

More fundamentally, the sequence in which the exam-
ples were presented in this paper holds an important mes-
sage for future applications of the method. We started
with these examples because they are the simplest, but
they can serve as a base of more complicated design con-
figurations. Moreover, the new criterion (pursuing two
objectives simultaneously) is an instrument for evaluating
and comparing the performance characteristics of different
design configurations for the same global constraints
[19,22–24].
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